April 29, 2016

- 1. Find the domain of the function $f(x,y) = \frac{xe^{1-y}\ln(3x+2)}{(x-y)\sqrt{12x-7y+23}}$. 2. What do the level curves for $g(x,y) = 11\ln(2(x+1)^2+2(y-3)^2)$ look like?
- 3. Find all first order partial derivatives of $f(x, y) = \frac{x \cos x}{x+2y}$.
- 4. The productivity of a certain country is given by $Q(K,L) = 120K^{2/3}L^{1/3}$ units, where K is the capital expenditure in units of \$1 million and L is the size of the labor force in thousands of worker-hours. The capital expenditure is currently 4.5 billion dollars and the labor level is 4,215,000 worker-hours. If capital expenditure is to be increased by 4 million dollars, approximately what change should be made to the labor force to increase productivity 500 units?
- 5. Let $z = e^{x^2 + y^2}$, $x = \ln(2t)$, and $y = \frac{1}{t^3 7}$. What is the value of $\frac{dz}{dt}$ when t = 2?
- 6. Find all local maximum and minimum points of $f(x, y) = 3x^2 xy + y^2 + y^2$ 44x + 6.
- 7. Minimize the cost of a rectangular box with volume 42 cubic feet if the material for the top costs \$6 per square foot, the material for the sides costs \$7 per square foot, and the material for the bottom costs \$8 per square foot.
- 8. Find the minimum value of the function $f(x,y) = x^2 + y^2$ subject to the constrain $x + y^2 = 18$.
- 9. The number of foxes and hounds in a certain region are given by $(x-10)^2 +$ $8(y-14)^2 = 68$, where x is the number of foxes in hundreds and y is the number of hounds in hundreds. What is the maximum number of foxes and

- hounds in this region? 10. Compute $\int_0^{\pi/4} \int_0^{\sin(x)} \frac{1}{\cos(x)} dy dx$. 11. Compute $\int_0^1 \int_{2x}^2 \sqrt{y^2 + 3} dy dx$. 12. Find the average value of the function $f(x, y) = 3e^x \sqrt{y + e^x}$ on the rectangle with vertices (0,0), (0,1), (5,0), and (5,1).
- 13. Solve the following system of equations:

$$5x - 2y + z = 20$$

$$2x - 4y + 3z = 4$$

$$-6x + 2y + z = 10$$

14. Write the matrix
$$\begin{bmatrix} 2 & -11 & 5 & 57 \\ -3 & 12 & -6 & -69 \\ 1 & -3 & 2 & 22 \end{bmatrix}$$
 in reduced row echelon form.

15. Find $A^2 - 3A$ if $A = \begin{bmatrix} 1 & -3 \\ 2 & 7 \end{bmatrix}$. 16. Find the inverse of the matrix $\begin{bmatrix} 1 & -2 & 3 \\ 0 & 1 & 2 \\ 1 & 0 & 1 \end{bmatrix}$. 17. Find the determinant of the matrix $\begin{bmatrix} 1 & 2 \\ 2 & 6 \end{bmatrix}$, and use it to find the inverse. 18. Find the determinant of the matrix $\begin{bmatrix} 1 & -3 & 7 \\ 0 & 1 & 5 \\ -3 & -2 & 3 \end{bmatrix}$. 19. Find the eigenvalues of $\begin{bmatrix} -2 & -10 & 17 \\ -2 & -1 & 2 \\ -3 & -6 & 18 \end{bmatrix}$ 20. Which of the following is an eigenvector of $\begin{bmatrix} -2 & -10 & 17 \\ -2 & -1 & 2 \\ -3 & -6 & 18 \end{bmatrix}$?

(a)
$$\begin{bmatrix} 1\\0\\1 \end{bmatrix}$$

(b)
$$\begin{bmatrix} 1\\3\\0 \end{bmatrix}$$

(c)
$$\begin{bmatrix} -2\\1\\0 \end{bmatrix}$$

(d)
$$\begin{bmatrix} 5\\0\\1 \end{bmatrix}$$

Answers:

1. $\{(x,y)|x \neq y, 12x - 7y > -23, x > 2/3\}$ 2. Circles with center (-1,3)3. $f_x = \frac{-x^2 \sin x + 2y \cos x - 2xy \sin x}{(x+2y)^2}, f_y = -\frac{2x \cos x}{(x+2y)^2}$ 4. Increase the labor force by 4,470 worker-hours 5.-420.056. Local minimum of -170 at (-8, -4)7. \$507.48 8. 17.75 9.3,300 $10.\ 0.35$ $11.\ 2.22$ 12.726.13 13. x = 6.8, y = 16.2, z = 18.4

 14.

 $\begin{bmatrix}
 1 & 0 & 0 & 3 \\
 0 & 1 & 0 & -1 \\
 0 & 0 & 1 & 8
 \end{bmatrix}$
15. $\begin{bmatrix} -8 & -15 \\ 10 & 22 \end{bmatrix}$ 16. $\begin{bmatrix} -1/6 & -1/3 & 7/6 \\ -1/3 & 1/3 & 1/3 \\ 1/6 & 1/3 & -1/6 \end{bmatrix}$ 17. 2; $\begin{bmatrix} 3 & -1 \\ -1 & 1/2 \end{bmatrix}$ 18.79 19. 5, -3, 320. a,c